182 N Port Road, Unit 3
Port Perry, Ontario L9L 0B7
App Support: 1-888-512-7173
Office: (905) 831-7001 / (888) 862-5356
Fax: (905) 831-7443 / (866) 885-1583
E-Mail: sales@lev-co.com
Icon for Chemicals and Plastics Manufacturing

Chemicals and Plastics Manufacturing - Rubber Manufacturing

Here are method(s) that control the emissions generated from the Rubber Manufacturing process.

Click on the preferred Control Method to learn more about:

  • Budgetary costs (Do you own quote)
  • Codes that are relevant to this control method
  • Dimensional Data
  • Equipment in use
  • Installation examples
  • Videos
  • Owners manuals
  • Brochures

For further support, please contact us directly at 1-888-862-5356.

Exhaust Fans & Controls
Fans for air make up and exhaust are quite often a difficult product to find when designing a simple ducted local exhaust system. Here we offer a variety of "LEV" (Local Exhaust & Ventilation) fans specifically designed to meet the demands of such systems. These Fans are able to handle specific applications such as: - Corrosive Fumes - Abrasive Dusts - Proper Flow and Static Pressure for a particular application.

Please feel free to contact one of our System Design Technicians for help in selecting the right fan for your application.
Animated Diagram for Exhaust Fans & Controls
Extraction Arms
1. What is an extraction arm?
Answer: An extraction arm is a Capture or receiving device designed to capture aerosols at the emission point before the contaminants have a chance to reach the workers' breathing space.
Typically, it is the 1st and most crucial part of an LEV or Local Exhaust & Ventilation system. NB: NB: Local exhaust ventilation can also be referred to as Process ventilation or Industrial Ventilation, or Local Control ventilation.
Available in several different designs:
  • Internally Supported
  • Externally Supported
  • Telescopic
  • Mild or Stainless Steel Construction
  • Lengths: Up to 45'
  • 2.5" to 8" Diameter's Available
Typically the Extraction Arms are connected to a fixed extraction fan, Filter system or dust collector via direct mounting or a "Header Type" duct system.

2. What applications are best served by extraction arms?
Answer: Here is a list: (List all of the Process linked to the catalogue solution called "Extraction arms")

3. Can "extraction arms" make toxic work places spaces safe from Airborne contaminants?
ANSWER: Yes, but only when systems the systems are designed, installed and used precisely. Unlike Dilution ventilation, Extraction arms can return significant energy savings and improvements in health and safety. However, the precision at which they must be designed, installed and used can be complex. Lev-co recommends that these three procedures OSHA's HOC(hierarchy of controls) and MOC (management of change) and PSR (Pre-start Safety review), when appropriate, should be used when selecting extraction arms as a capture method.

Here are links to examples of these 2 procedures:
OSHA Hierarchy of controls (https://www.osha.gov/sites/default/files/2019-03/health_hazards_workbook.pdf
MOC Management of change sample document (https://www.safer.ca/docs/safer_combustible_dust_management_of_change_handout.pdf)
PSR Pre-start Health and Safety review (https://www.osha.gov/sites/default/files/publications/osha3132.pdf)

4. What industries and environments are extraction arms used in?
ANSWER: Here are the various industries using extraction arms: (Show links to relevant industries)

5. What are the different types of extraction arms available?
ANSWER: See our offering of fume extractors here: (Show list from catalogue section)

5.5 What are the selection criteria that must be considered when selecting an extraction arm?
ANSWER: See Below:

  • Capacity (How much flow will the extraction arm handle?)
  • Capture velocity (can the extraction accommodate the required capture velocity to capture the aerosol?)
  • Easy to use (How many articulations/joints does the extraction arm have?)
  • Stay in place? (Does the extraction stay in place, how often do the joints need to be tightened?
  • Extension hoods (Do you need a large diameter extension hood, eg 36" diameter?) (Optional)
  • Can the extraction arm withstand the Pressure/abraision/corrosion/etc?


What are the pros and cons of extraction arms versus other types of capture methods?
ANSWER: Pro's:

Remove airborne toxins at source before they enter any worker“s breathing zone
Low energy costs (Heat loss, electrical energy)
Allow the use of smaller filtration equipment
Well suited for "on-demand" controls allowing for greater flow at the source, yet lower overall flow
Some extraction arms allow the supporting of items like wire feeders, Compressed air cord reels and electrical cord reels for increased productivity
Better visibility through the addition of hood-mounted lighting solutions
Optimized hoods, large-diameter receiving hoods and hose extensions are effective solutions where capture or hood placement is difficult
hood can be rotated 90 degrees (perpendicular to the floor), eliminating shadowing
when used correctly, the operator can visually see the contaminant being safely drawn away from the process Con's:

Operator needs to be comfortable with the use of the arm to ensure adequate capture
Arms not always available in larger diameters for required capture velocity
Production time lost to place the extraction arm in place
Cannot always reach the point of emission
Worker buy-in is not always achieved due to lack of fume capture
Fugitive emission released into the workspace
Some extraction are not built to withstand the working environment
poor design can lead to excess capture velocity resulting in extra capture velocity (Shielding gases loss) and air noise.

Animated Diagram for Extraction Arms
Updraft & Overhead Capture Systems
Updraft and Overhead hoods, completely or partially enclose the process or contaminant generation point. For example: A Complete Enclosure would be a sealed “box” or similar type of configuratin where only minimal openings exist and the contaminated air is sucked up and away. The enclosing hood is preferred wherever the process configuration and operation will permit. A Partial Enclosure would be an “open box” (i.e.: with the lid cut off). An inward flow of air through the enclosure opening will contain the contaminant within the enclosure and prevent its escape into the outside work environment. If complete enclosure is not feasible, partial enclosure should be used to the maximum extent possible.

Here are some general design velocities when using "RECEIVING" Hoods:

Please contact a Lev-Co representative for more information.
Animated Diagram for Updraft & Overhead Capture Systems